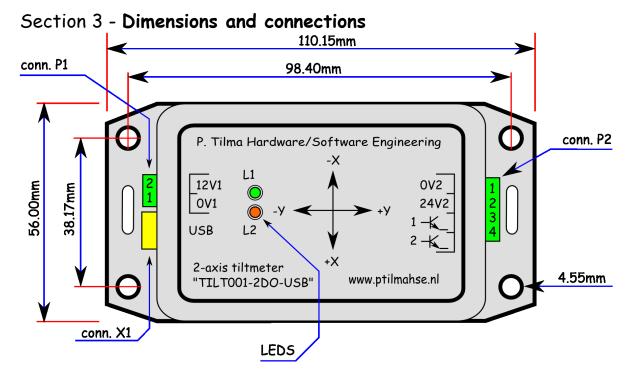
Manual Two axis inclinometer TILT001-2DO-USB

Features


- Two-axis inclination measurement.
- USB interface (HID class device).
- USB powered or external supply.
- Two isolated alarm outputs.
- Two diagnostic LEDS.
- Alarm conditions configurable.
- Standalone operation.
- Desktop software (calibration, configuration, test).

Section 1 - Contents

Section	Description	Page
	Title	1
1	Contents	2
2	General description	3
3	Dimensions and connections	4
4	Technical specifications	5
5	HID class device	7
6	Communication protocol	8
7	Temperature compensation	13
8	Calibration	14
9	Alarm conditions	15
10	Alarm assignment	16
11	Output configuration	17
12	More PC application screenshots	19
13	Package contents	20
14	Standard Legal Stuff	21

Section 2 - General description

The TILT001-2DO-USB is a two axis intelligent inclinometer. The device can be powered by USB or by an external supply (automatic switchover). Sensor and electronics are housed in an enclosure which can be easily mounted. Communication with the device is possible by means of the USB interface. Commands are implemented to perform calibration, change operational mode or request measurements for inclination and acceleration. Desktop software is included for configuration and testing. The module is equipped with two configurable optoisolated digital outputs.

Connector X1 - USB B	Signal name	Description
Pin 1	VCC	+5V
Pin 2	D-	Data -
Pin 3	D+	Data +
Pin 4	GND	Ground

Connector P1	Signal name	Description
Pin 1	OV1	Power supply return
Pin 2	12V1	Power supply 12V

Connector P2	Signal name	Description
Pin 1	0V2	Output supply return
Pin 2	24V2	Output supply
Pin 3	Output 1	High side power switch
Pin 4	Output 2	High side power switch

Section 4 - Technical specifications

Electrical	Operating conditions	Max. ratings
Supply voltage	513V	
Supply current	25mA @ 5V	
Digital outputs (2)	24V	200mA

Mechanical	
Enclosure dimension (length x width x height)	110mm × 56mm × 25mm
Enclosure material	ABS plastic
Enclosure mounting holes	
Connector USB	Device USB type B
Connector power supply	Phoenix MC1,5/2-G-3,81
Connector digital outputs	Phoenix MC1,5/4-G-3,81

Environmental	
Operating temperature	-20°C +20°C
Humidity	
Protection	

Measurement	
Number of axes	2
Range per axis inclination / acceleration	70° / 1000mg
Inclination resolution / accuracy	0.1° / 0.2°
Acceleration resolution/ accuracy	1 mg / 5mg

USB interface	
Interface	USB 2.0 Full speed (12 Mbits/s)
Device class	HID (Human Interface Device)
Connector	Standard USB B

Software	
USB	Full speed
Driver	HID (Human Interface Device)
Desktop application	Windows/x86

Section 5 - HID class device

The TILT001-2DO-USB conforms to the USB HID Class specification version 1.1. After the inclinometer has been connected with your desktop computer (on which an usb-aware operating system is running), the device will automatically be identified as a HID class device. The desktops operating system will then load a HID class device driver. The host now can send and receive data by sending and requesting reports in control or interrupt transfers.

The Windows PC application program makes use of the following functions :

Windows HID API		
API function Purpose		
HidD_GetFeature() Read a feature report (USB control transfer)		
HidD_SetFeature() Send a feature report (USB control transfer)		
ReadFile() Read an input report (USB interrupt transfer)		

Section 6 - Communication protocol

Commands are implemented to request measurements for inclination and acceleration, perform calibration and change operational mode. The supplied PC application program makes use of these different commands.

Test			
USB transfer	Report id	Report size	Description
Control	0x01	0x27	Get software version
Control	0x02	1	Toggle digital output 1
Control	0x03	1	Toggle digital output 2
Control	0x04	1	Toggle led L1
Control	0x05	1	Toggle led L2
Control	0x06	1	Toggle onboard led
Control	0x07	2	Power source (USB or external)
Control	0x09	2	Get number USB interupts
Control	0x09	2	Get acceleration sensor type
Control	0x0a	2	Get device addres

	Measurement			
USB	Report	Report	Description	
transfer	id	size		
Control	0x10	4	Get acceleration values for Xaxis and Y-axis	
Control	0×11	4	Get inclination values for Xaxis and Y-axis	
Control	0x12	1	Measurement inclination on	
Control	0x13	1	Measurement inclination off	
Control	0x14	2	Get onboard temperature	
Control	0x15	4	Get duty cycle X axis (* 1000)	
Control	0x16	4	Get duty cycle Y axis (* 1000)	
Control	0x17	2	Get update rate per second	
Control	0x18	2	Set filter property	
Control	0x19	2	Get filter property	
Interrupt	0x20	2	Inclination X-axis	
Interrupt	0x21	2	Inclination Y-axis	
Interrupt	0x22	2	Acceleration X-axis	
Interrupt	0x23	2	Acceleration Y-axis	

	Initialisation			
USB transfer	ReportReportDescriptionidsize		Description	
Control	0x30	1	Set calibration and alarm variables to default	
Control	0×31	1	Set calibration variables to default	
Control	0x32	1	Set alarm variables to default	
Control	0x33	1	Enable sending inclination to USB	
Control	0x34	1	Disable sending inclination to USB	
Control	0x35	1	Enable sending acceleration to USB	
Control	0x36	1	Disable sending acceleration to USB	

	Calibration			
USB transfer	Report id	Report size	Description	
Control	0x40	2	Set calibration value for X-axis horizontal	
Control	0×41	2	Set calibration value for X-axis vertical (-1g)	
Control	0x42	2	Set calibration value for X-axis vertical (+1g)	
Control	0x43	2	Get calibration value for X-axis horizontal	
Control	0x44	2	Get calibration value for X-axis vertical (-1g)	
Control	0x45	2	Get calibration value for X-axis vertical (+1g)	
Control	0x46	2	Set calibration value for Y-axis horizontal	
Control	0x47	2	Set calibration value for Y-axis vertical (-1g)	
Control	0x48	2	Set calibration value for Y-axis vertical (+1g)	
Control	0x49	2	Get calibration value for Y-axis horizontal	
Control	0x4a	2	Get calibration value for Y-axis vertical (-1g)	
Control	0x4b	2	Get calibration value for Y-axis vertical (+1g)	

Alarm configuration				
USB	Report	Report	Description	
transfer	id	size		
Control	0x50	2	set inclination alarm low value X axis	
Control	0x51	2	set inclination alarm high value X axis	
Control	0x52	2	get inclination alarm low value X axis	
Control	0x53	2	get inclination alarm high value X axis	
Control	0x54	2	set inclination alarm low value Y axis	
Control	0x55	2	set inclination alarm high value Y axis	
Control	0x56	2	get inclination alarm low value Y axis	
Control	0x57	2	get inclination alarm high value Y axis	
Control	0x58	2	set max. acceleration change value X axis	
Control	0x59	2	get max. acceleration change value X axis	
Control	0x5a	2	2 set max. acceleration change value Y axis	
Control	0x5b	2	get max. acceleration change value Y axis	
Control	0x5c	4	set assignment of alarms to outputs	
Control	0x5d	4	get assignment of alarms to outputs	
Control	0x5e	2	set hysteresis inclination alarm	
Control	0x5f	2	get hysteresis inclination alarm	
Control	0x60	2	set output behaviour	
Control	0×61	2	get output behaviour	
Interrupt	0x70	2	Vibration alarm X-axis	
Interrupt	0x71	2	Vibration alarm Y-axis	
Interrupt	0x72	2	Inclination alarm X-axis	
Interrupt	0x73	2	Inclination alarm Y-axis	

	Output 1	Output 2	L1 (led)	L2 (led)	USB
Vibration X axis	bit 31	bit 30	bit 29	bit 28	bit 27
Vibration Y axis	bit 23	bit 22	bit 21	bit 20	bit 19
Inclination X-axis	bit 15	bit 14	bit 13	bit 12	bit 11
Inclination Y-axis	bit 7	bit 6	bit 5	bit 4	bit 3

Bit assignment command "setAlarmAss".

Bit assignment command "setOutputConf"

	Polarity	Freeze	Pattern
Output 1	bit 15	bit 14	bit 13
Output 2	bit 11	bit 10	bit 9
L1 (led)	bit 7	bit 6	bit 5
L2 (led)	bit 3	bit 2	bit 1

Section 7 - Temperature compensation

The output of the tilt sensing element inside the TILT001-2DO-USB is not entirely independant of temperature. Especially in the case of large temperature differences this effect might influence accuracy. Thats why hardware and software have been implemented to compensate for this effect.

💿 Tilt -> Auxiliary		_ 🗆 🛛
-Internal data]
Software version	vare version, 01.00	Read
Board temperature	24.6	Read
Current duty cycle X axis	49546	Read
Current duty cycle Y axis	46757	Read
Output rate per second	4	Read
Power	USB	Read
USB interupts (transactie)	385	Read
Acceleration sensor	202	Read
Device addres	1	Read
Toggle outputs		
Toggle outpu	it 1 Toggle outpu	t 2
Toggle onboard led	Toggle led L1	Foggle led L2

Read current board temperature

Section 8 - Calibration

In menu "Tilt-> Calibration->Three point" you can calibrate the TILT001-2DO-USB. The procedure is as follows :

Locate the sensor in such a way that the X-axis is parallel to the earth's surface. Press button "Calibrate X-axis at 0". Locate the sensor in such a way that the X-axis is perpendicular to the earth's surface. Press button "Calibrate X-axis at 90". Rotate the sensor 180 so that the X-axis is again perpendicular to the earth's surface. Then press button "Calibrate X-axis at -90".

The calibration procedure for the y-axis goes in exactly the same way.

💿 Tilt -> Calibration -	> Three point	
-X-axis]
49835	Calibrate X-axis at 0	Read
-10831	Calibrate X-axis at 90	Read
12046	Calibrate X-axis at -90	Read
-Y-axis		
46785	Calibrate Y-axis at 0	Read
11652	Calibrate Y-axis at 90	Read
-11360	Calibrate Y-axis at -90	Read
Initi	alise calibration variables	

Calibration

© P.Tilma Hardware/Software Engineering Internet : www.ptilmahse.nl Preliminary datasheet. Subject to change without notice.

Section 9 - Alarm conditions

In menu "Tilt->Alarm->Conditions" inclination limits for the X-axis and Y-axis can be set. If the current X-axis or Y-axis inclination exceeds these limitvalues an inclination alarm will be generated.

In the same menu acceleration limits for the X-axis and Y-axis can be set. If the change in X-axis acceleration or Y-axis acceleration exceeds these limitvalues an acceleration alarm will be generated.

To prevent continuously switching at a critical point an hysteresis procedure has been implemented. The hysteresis value can be changed.

Tilt -> Alarm -> Conditions		
Inclination alarm conditions [degrees]		
Inclination low X-axis -5 💌 Read Store		
Inclination high X-axis 5 💌 Read Store		
Inclination low Y-axis -5 💌 Read Store		
Inclination high Y-axis 5 💌 Read Store		
Inclination hysteresis [1/10th of degrees]		
Hysteresis 5 💌 Read Store		
Acceleration alarm conditions [mg]		
Acceleration change X-axis 2000 🗨 Read Store		
Acceleration change Y-axis 2000 💌 Read Store		
Initialise alarm conditions		

Setting alarmconditions

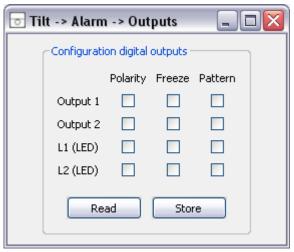
© P.Tilma Hardware/Software Engineering Internet : www.ptilmahse.nl Preliminary datasheet. Subject to change without notice.

Section 10 - Alarm assignment

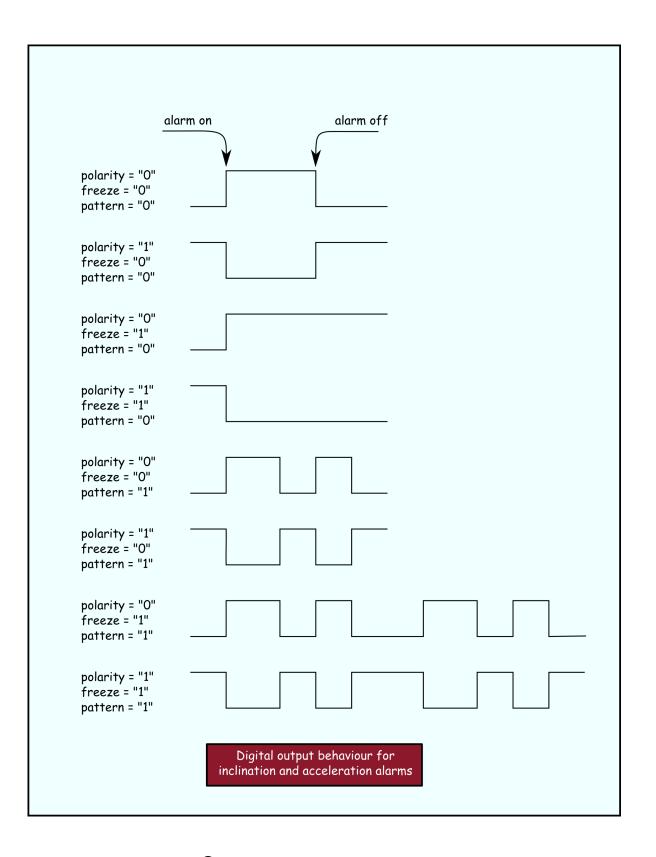
Four possible alarmevents can be directed to 5 physical outputs. In menu "Tilt->Alarm->Assignment" you can specify how this redirection takes place. Not all possible combinations are allowed.

🕣 Tilt -> Alarm -> Assignment 📃 🗖						
Assignment alarms to	Assignment alarms to outputs					
	Output 1	Output 2	L1 (LED)	L2 (LED)	USB	
Vibration X axis :						
Vibration Y axis :						
Inclination X axis :	~		V		✓	
Inclination Y axis :		~		\checkmark	✓	
Read	St	ore	0×0000)a858		

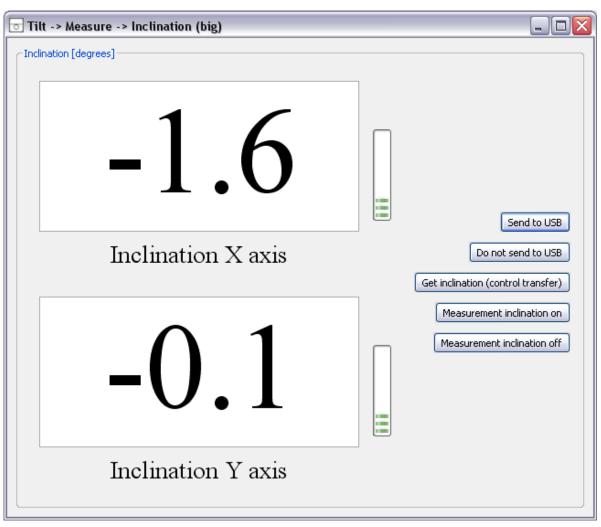
Assignment alarmevents to physical outputs


Section 11 - Output configuration

Three properties determine the behaviour of each output.


Polarity : voltage level of the output will be inverted.

Freeze : if an alarmevent takes place the output will switch, and will stay in that state even if there is no alarm anymore.


Pattern : an on/off sequence will be send to the output (e.g. buzzer).

Properties physical outputs

© P.Tilma Hardware/Software Engineering Internet : www.ptilmahse.nl Preliminary datasheet. Subject to change without notice.

Section 12 - More PC application screenshots

Inclination display.

Items	Description
1	Box with electronics and sensor
2	USB cable (2m)
3	2 pole plug (phoenix MC1,5/2-ST-3,81)
4	4 pole plug (phoenix MC1,5/4-ST-3,81)

Section 13 - Package contents

Section 14 - STANDARD LEGAL STUFF

Although this product has been thoroughly tested by **P.Tilma Hardware/Software Engineering**, we cannot take responsibility for this product, or will we take any responsibility for anything happening as a result of using this product.

Performance information :

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of this product as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

Single copy license :

You may download copies of the information or software ("Materials") found on

P.Tilma Hardware/Software Engineering sites on a single computer for your personal, noncommercial internal use only. This is a license, not a transfer of title, and is subject to the following restrictions. You may not :

(a) Modify the Materials or use them for any commercial purpose, or any public display, performance, sale or rental.

(b) Decompile, reverse engineer, or disassemble software Materials.

(c) Remove any copyright or other proprietary notices from the Materials.

(d) Transfer the Materials to another person. You agree to prevent any unauthorized copying of the Materials.

Ownership of Materials :

This product is copyrighted and is protected by worldwide copyright laws and treaty provisions. They may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without **P.Tilma Hardware/Software Engineering** prior written permission.

Disclaimer :

The materials are provided "as is" without any express or implied warranty of any kind including warranties of merchantability, noninfringement of intellectual property, or fitness for any particular purpose. In no event shall **P.Tilma Hardware/Software Engineering**, or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information) arising out of the use of or inability to use the materials, even if **P.Tilma Hardware/Software Engineering** has been advised of the possibility of such damages.

P.Tilma Hardware/Software Engineering further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. P.Tilma Hardware/Software Engineering may make changes to these materials, or to the products described therein, at any time without notice. P.Tilma Hardware/Software Engineering makes no commitment to update the Materials.