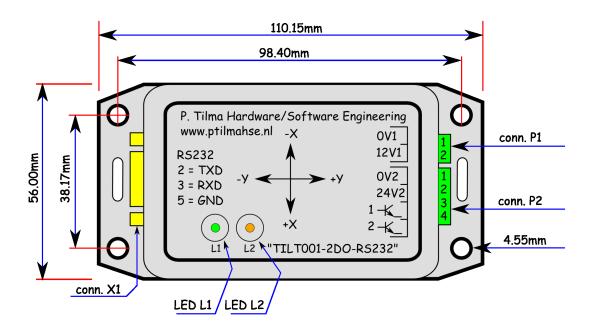

Manual
Two axis inclinometer TILT001-2DO-RS232

Features:

- · Two-axis inclination measurement
- · Isolated RS232 interface.
- Two isolated outputs.
- · Alarm conditions configurable.
- Temperature compensated.
- · Desktop software.


Section 1 - Contents

Section	Description	Page
	Title	1
1	Contents	2
2	General description	3
3	Dimensions and connections	4
4	Technical specifications	5
5	Communication protocol	7
6	Temperature compensation	13
7	Calibration	14
8	Alarm conditions	15
9	Alarm assignment	16
10	Output configuration	17
11	More PC application screenshots	19
12	Package contents	20
	Standard Legal Stuff	21

Section 2 - General description :

The TILT001-2DO-RS232 is a low cost two axis intelligent inclinometer. Sensor and electronics are housed in an enclosure which can be easily mounted. Communication with the device is possible by means of an optoisolated RS232 interface. Commands are implemented to perform calibration, change operational mode or request measurements for inclination and acceleration. Desktop software is included for configuration and testing. The module is equipped with two configurable optoisolated digital outputs.

Section 3 - Dimensions and connections.

Connector X1 - DSUB 9 Female	Signal name	Description
Pin 2	TXD	RS232 transmit data
Pin 3	RXD	RS232 receive data
Pin 5	GND	RS232 return

Connector P1	Signal name	Description
Pin 1	OV1	Power supply return
Pin 2	12V1	Power supply 12V

Connector P2	Signal name	Description
Pin 1	OV2	Output supply return
Pin 2	24V2	Output supply
Pin 3	Output 1	High side power switch
Pin 4	Output 2	High side power switch

Section 4 - Technical specifications :

Electrical	Operating conditions	Max. ratings
Supply voltage	513V	
Supply current	60m <i>A</i>	
Digital outputs (2)	24V	200m <i>A</i>

Mechanical	
Enclosure dimension (length x width x height)	110mm × 56mm × 25mm
Enclosure material	ABS plastic
Enclosure mounting holes	
Connector RS232	DSUB 9 female
Connector power supply	Phoenix MC1,5/2-G-3,81
Connector digital outputs	Phoenix MC1,5/4-G-3,81

Environmental		
Operating temperature	-20°C +20°C	
Humidity		
Protection		

Measurement	
Number of axes	2
Range per axis inclination / acceleration	70° / 1000mg
Inclination resolution / accuracy	0.1° / 0.2°
Acceleration resolution/ accuracy	1 mg / 5mg
Temperature compensated	Yes

Software	
R5232 communication parameters	9600 baud, 8 databits, 2 stopbits, no parity
Communication protocol	ASCII commands (see table)
Desktop application	Windows/x86

Section 5 - Communication protocol.

ASCII commands are implemented to request measurements for inclination and acceleration, perform calibration and change operational mode. The supplied PC application program makes use of these different commands.

Test	Description	Answer
<cr></cr>	Software version	softw,0105 <crlf></crlf>
toggleOut1 <cr></cr>	Toggle digital output 1	
toggleOut2 <cr></cr>	Toggle digital output 2	
toggleL1Led <cr></cr>	Toggle led L1	
toggleL2Led <cr></cr>	Toggle led L2	
toggleBoardLed <cr></cr>	Toggle onboard led	

Measurement	Description	Answer
getAccel <cr></cr>	Acceleration values for Xaxis	accelX,300 <crlf></crlf>
	and Y-axis	accely,-600 <crlf></crlf>
repAccelOn <cr></cr>	Acceleration values for Xaxis	
	and Y-axis continously.	
repAccelOff <cr></cr>	Repeat function off for	
	accelleration	
getIncl <cr></cr>	Inclination values for Xaxis and	inclX,-15 <crlf></crlf>
	Y-axis	incly, 3 <crlf></crlf>
repInclOn <cr></cr>	Inclination values for Xaxis and	
	Y-axis continously.	
repInclOff <cr></cr>	Repeat function off for	
	inclination	
getTemp <cr></cr>	Onboard temperature	temp,-155 <crlf></crlf>
getDutyXaxis <cr></cr>	Duty cycle X axis (* 1000)	dutyXaxis,40000 <crlf></crlf>
getDutyYaxis <cr></cr>	Duty cycle Y axis (* 1000)	dutyYaxis,60000 <crlf></crlf>
getRate <cr></cr>	Update rate per second	rate,7 <crlf></crlf>
setFilter, 50 <cr></cr>	Filter property	
getFilter <cr></cr>		filter,50 <crlf></crlf>

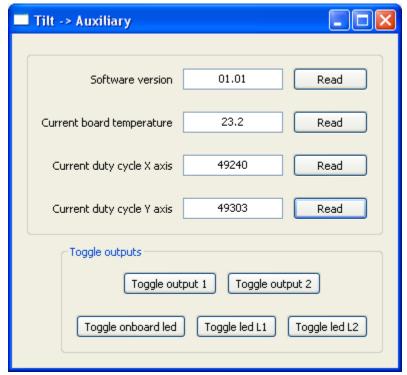
Initialisation	Description	Answer
initAllNv <cr></cr>	Set calibration and alarm variables to default	
initCalNv <cr></cr>	Set calibration variables to default	
initAlarmNv <cr></cr>	Set alarm variables to default	

Calibration	Description	Answer
setCalXH <cr></cr>	Set calibration value for X-axis horizontal	
setCalXMinV <cr></cr>	Set calibration value for X-axis vertical (-1g)	
setCalXPlusV <cr></cr>	Set calibration value for X-axis vertical (+1g)	
getCalXH <cr></cr>	Get calibration value for X-axis horizontal	calXH,50000 <crlf></crlf>
getCalXMinV <cr></cr>	Get calibration value for X-axis vertical (-1g)	calXMinH,30000 <crlf></crlf>
getCalXPlusV <cr></cr>	Get calibration value for X-axis vertical (+1g)	calXPlusH,-30000 <crlf></crlf>
setCalYH <cr></cr>	Set calibration value for Y-axis horizontal	
setCalYMinV <cr></cr>	Set calibration value for Y-axis vertical (-1g)	
setCalYPlusV <cr></cr>	Set calibration value for Y-axis vertical (+1g)	
getCalYH <cr></cr>	Get calibration value for Y-axis horizontal	calYH,50000 <crlf></crlf>
getCalYMinV <cr></cr>	Get calibration value for Y-axis vertical (-1g)	calyMinH,30000 <crlf></crlf>
getCalYPlusV <cr></cr>	Get calibration value for Y-axis vertical (+1g)	calyPlusH,30000 <crlf></crlf>

Alarm configuration	Description	Answer
setInclLowX,-15 <cr></cr>	set inclination alarm low value X axis	
setInclHighX,5 <cr></cr>	set inclination alarm high value X axis	
getInclLowX <cr></cr>	get inclination alarm low value X axis	inclLowX,-15 <crlf></crlf>
getInclHighX <cr></cr>	get inclination alarm high value X axis	inclHighX,5 <crlf></crlf>
setInclLowY,4 <cr></cr>	set inclination alarm low value Y axis	
setInclHighY,20 <cr></cr>	set inclination alarm high value Y axis	
getInclLowY <cr></cr>	get inclination alarm low value Y axis	inclLowY,4 <crlf></crlf>
getInclHighY <cr></cr>	get inclination alarm high value Y axis	inclHighY,20 <crlf></crlf>
setAccelChangeX,250 <cr></cr>	set max. acceleration change value X axis	
getAccelChangeX <cr></cr>	get max. acceleration change value X axis	accelChangeX,250 <crlf></crlf>
setAccelChangeY,40 <cr></cr>	set max. acceleration change value Y axis	
getAccelChangeY <cr></cr>	get max. acceleration change value Y axis	accelChangeY,40 <crlf></crlf>

Alarm configuration (cont.)	Description	Answer
setAlarmAss,FFFFFFFF <cr></cr>	assignment of alarms tooutputs (hexadecimal format, see table below)	
getAlarmAss <cr></cr>		alarmAss,FFFFFFFF< <crif></crif>
setHyst,50 <cr></cr>	hysteresis inclination alarm (1/10th of degree)	
getHyst <cr></cr>		hyst,50 <crlf></crlf>
setOutputConf,	behaviour outputs	
FFFFFFFF< <cr></cr>	(hexadecimal format, see tabel below)	
getOutputConf <cr></cr>		outputConf, FFFFFFFF< <crlf></crlf>

Bit assignment command "setAlarmAss".


	Output 1	Output 2	L1 (led)	L2 (led)	R5232
Vibration X axis	bit 31	bit 30	bit 29	bit 28	bit 27
Vibration Y axis	bit 23	bit 22	bit 21	bit 20	bit 19
Inclination X-axis	bit 15	bit 14	bit 13	bit 12	bit 11
Inclination Y-axis	bit 7	bit 6	bit 5	bit 4	bit 3

Bit assignment command "setOutputConf"

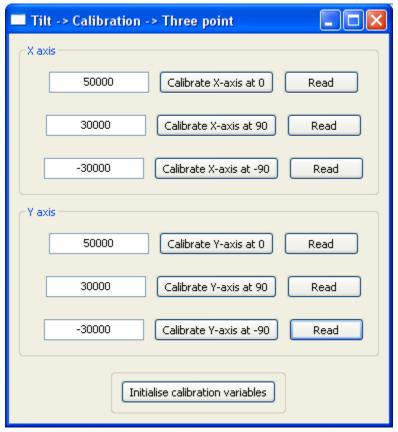
	Polarity	Freeze	Pattern
Output 1	bit 15	bit 14	bit 13
Output 2	bit 11	bit 10	bit 9
L1 (led)	bit 7	bit 6	bit 5
L2 (led)	bit 3	bit 2	bit 1

Section 6 - Temperature compensation.

The output of the tilt sensing element inside the TILT001-2DO-RS232 is not entirely independent of temperature. Especially in the case of large temperature differences this effect might influence accuracy. Thats why hardware and software have been implemented to compensate for this effect.

Read current board temperature

Section 7 - Calibration.

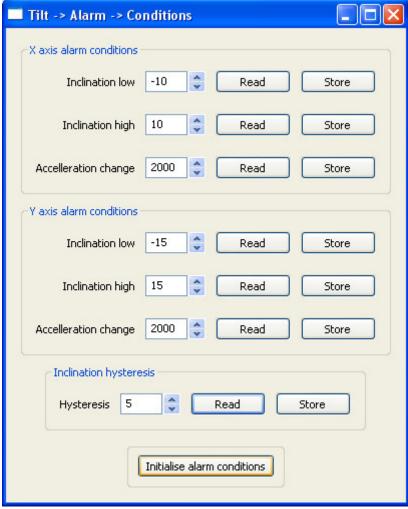

In menu "Tilt-> Calibration-> Three point" you can calibrate the TILT001-2DO-RS232. The procedure is as follows:

Locate the sensor in such a way that the X-axis is parallel to the earth's surface. Press button "Calibrate X-axis at 0".

Locate the sensor in such a way that the X-axis is perpendicular to the earth's surface. Press button "Calibrate X-axis at 90".

Rotate the sensor 180 so that the X-axis is again perpendicular to the earth's surface. Then press button "Calibrate X-axis at -90".

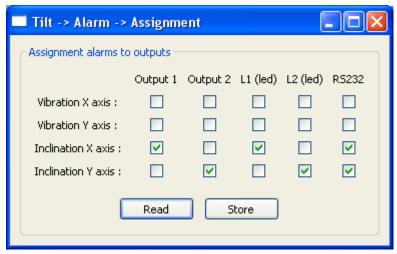
The calibration procedure for the y-axis goes in exactly the same way.



Calibration

Section 8 - Alarm conditions.

In menu "Tilt->Alarm->Conditions" inclination limits for the X-axis and Y-axis can be set. If the current X-axis or Y-axis inclination exceeds these limitvalues an inclination alarm will be generated.

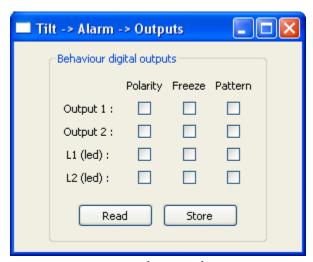

In the same menu acceleration limits for the X-axis and Y-axis can be set. If the change in X-axis acceleration or Y-axis acceleration exceeds these limitvalues an acceleration alarm will be generated. To prevent continuously switching at a critical point an hysteresis procedure has been implemented. The hysteresis value can be changed.

Setting alarm conditions

Section 9 - Alarm assignment.

Four possible alarmevents can be directed to 5 physical outputs. In menu "Tilt->Alarm->Assignment" you can specify how this redirection takes place. Not all possible combinations are allowed.

Assignment alarmevents to physical outputs

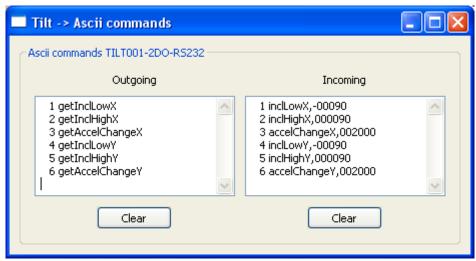

Section 10 - Output configuration.

Three properties determine the behaviour of each output.

Polarity: voltage level of the output will be inverted.

Freeze: if an alarmevent takes place the output will switch, and will stay in that state even if there is no alarm anymore.

Pattern: an on/off sequence will be send to the output (e.g. buzzer).


Properties physical outputs

Section 11 - More PC application screenshots.

Inclination display in big format.

Underlying ASCII commands

Section 12 - Package contents.

Items	Description
1	box with electronics and sensor
2	serial cable (1 to 1, subd 9, male, female)
3	2 pole plug (phoenix MC1,5/2-ST-3,81)
4	4 pole plug (phoenix MC1,5/4-ST-3,81)

STANDARD LEGAL STUFF

Although this product has been thoroughly tested by **P.Tilma Hardware/Software Engineering**, we cannot take responsibility for this product, nor will we take any responsibility for anything happening as a result of using this product.

Performance information:

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of this product as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

Single copy license:

You may download copies of the information or software ("Materials") found on

- **P.Tilma Hardware/Software Engineering** sites on a single computer for your personal, non-commercial internal use only. This is a license, not a transfer of title, and is subject to the following restrictions. You may not:
- (a) Modify the Materials or use them for any commercial purpose, or any public display, performance, sale or rental.
- (b) Decompile, reverse engineer, or disassemble software Materials.
- (c) Remove any copyright or other proprietary notices from the Materials.
- (d) Transfer the Materials to another person. You agree to prevent any unauthorized copying of the Materials.

Ownership of Materials:

This product is copyrighted and is protected by worldwide copyright laws and treaty provisions. They may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without **P.Tilma Hardware/Software Engineering** prior written permission.

Disclaimer:

The materials are provided "as is" without any express or implied warranty of any kind including warranties of merchantability, noninfringement of intellectual property, or fitness for any particular purpose. In no event shall **P.Tilma Hardware/Software Engineering**, or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information) arising out of the use of or inability to use the materials, even if **P.Tilma Hardware/Software Engineering** has been advised of the possibility of such damages.

P.Tilma Hardware/Software Engineering further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. P.Tilma Hardware/Software Engineering may make changes to these materials, or to the products described therein, at any time without notice. P.Tilma Hardware/Software Engineering makes no commitment to update the Materials.